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Distinctive buildings in extreme environments

Extreme outdoor environment
* Very hot

* Dry or extreme humid

« Strong solar radiation

SIS

Demand for higher quality
« Health

 Thermal comfort

« Lower energy consumption

!

Change in
Sustainable Strategies

Dubarch Architects, Qasr Al Sarab Desert Resort



How to design sustainable buildings in extreme environments?
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Traditional sustainable strategies for extreme climate

Shading, Natural ventilation, Atomization/fogger cooling...
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Citizen Center, Haikou, China
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Agricultural Expo Exhibition Hall, Chengdu, China
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1. Building envelope improvement — Shading and ventilation

O An adaptive shading and daylighting system—SVM (Shape-Variable Mashrabiya)
O Consisting of three identical opaque backscattering shields, and able to move relative to
each other so as to switch between in the shading and lighting

Global Energy Performance
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Images of the SVM: opened (left) and closed (right) configurations.

Combines the advantages of building shading and lighting
O SVM is able to effectively block the solar radiation in the presence of direct sunlight, thus avoiding overheating of building spaces
and minimizing glare issues. when direct radiation is absent, the SVM allows important skylight penetration while restoring some

view to the outside.
O A high amount of direct sunlight is transformed into diffuse light providing more visual comfort to the users.



1. Building envelope improvement — Shading and ventilation

Sun shading device integrated with solar energy collector and photovoltaic panel
Using the characteristics of solar radiation and dry in extreme environments, building
shading is combined with solar energy collection to control shading, while using solar

energy and photovoltaic power generation
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1. Building envelope improvement — Shading and ventilation

O Phase change materials assisted night purge ventilation
O This method uses the cool of the night to release the warmth stored in the thermal mass
during the day.
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O the low mass and high energy storage capacity of PCMs

augment the thermal inertia of buildings

O night ventilation removes the heat stored in the building

during

the day
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1. Building envelope improvement — Shading and ventilation

O Demand controlled ventilation strategy with data-driven model and air balancing control
O The ventilation strategy consists of two steps: system model construction and air
balancing control
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Based on data-driven model and air balancing control

O Use data for training to optimize building ventilation performance

O The ventilation control strategy effectively solves the problem of over-ventilation
and under-ventilation of the ventilation system, and achieves energy saving of

fan power



1. Building envelope improvement — Radiative cooling

O Radiative cooling: Inspired by nature
O Applied in buildings: passive cooling, heat dissipation to outer space
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1. Building envelope improvement — Radiative cooling

O Daytime radiative cooling: Great progress has been made in materials innovation
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1. Building envelope improvement — Radiative cooling

Novel material: Polymer radiation material (University of Colorado)
Infrared emissivity greater than 0.93

When the material is backed with silver coating, the noon radiation cooling power of the
material reaches 93W/m’ under direct sunlight,
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1. Building envelope improvement — Radiative cooling

O Polymer radiation material
O Mass production has been carried out, and the material is flexible and can be wound
O Mixed metamaterial film: width 300mm, thickness 50um
O Industrial production: 1roll (5m long)/ minute
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1. Building envelope improvement — Radiative cooling

O The polymer radiation material has achieved mass production

O Appliedin airport terminal
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1. Building envelope improvement — Radiative cooling

O The polymer radiation: theoretic sustainability analysis
O In summer condition (building size 6.9*4.2*3.5m)
O Suitable for extremely hot environments
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2. Utilization of natural environment — Solar Energy

O Solar energy: Reliable renewable energy in extreme environments
O Photovoltaic Air conditioner: utilization of solar energy

O Flexible and efficient; Energy saving and low carbon

Photovoltaic array
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2. Utilization of natural environment — Solar Energy

O Photovoltaic Air conditioner: could achieve Net zero energy consumption and zero
carbon (designed and manufactured by Gree)
O Won the Global Quality Innovation Award

DEVELOPMENT AND APPLICATION OF PHOTOVOLTAIC
DIRECT-DRIVEN INVERTER AIR CONDITIONING SYSTEM
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2. Utilization of natural environment — Solar Energy

O Sustainable (Zero carbon) case: Photovoltaic Air conditioner
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3. Higher efficient equipment and system — UEAC

O An Ultra-Efficient Air Conditioner for cooling: energy saving for extreme environments
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Ultra-Efficient Air Conditioner Integrated with

Evaporative Cooling Fresh Air and Photovoltaic

High performance systems and components
O Dual evaporators and condensers

O cascade-heat-transfer refrigeration cycle

Natural energy utilization
O Fresh air evaporative cooling and ventilation

O Evaporative cooling of unit

Low carbon and renewable energy
O Photovoltaic direct-drive technology
O Low GWP refrigerant R152a

Especially suitable for Tropical monsoon and
Tropical savanna climate 29



3. Higher efficient equipment and system — UEAC

O The Research & Development path

Preliminary stage
r, GIRREE 2018.11 2019.6 2019.8 2019.10
Competition Registration Detailed Announcement of
start deadline Technical Finalists
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INNOVATION . Ceremony Testing

Final stage
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3. Higher efficient equipment and system — UEAC

O Simulation results
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® Annual total power consumption reduced to 585 k\Wh

® Compressor energy consumption accounts for 79.8%

Compressor, 79.8%

® Fans energy consumption accounts for 20.0%
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3. Higher efficient equipment and system — UEAC

Power kW/ Water consumption L

O 10-day lab test
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O Typical 10-day lab-simulated
year-round performance test

O Converted annual power
consumption: 739 kWh

O Reduced annual power
consumption: 84.3%

O Reduced carbon emissions:
85.7%
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3. Higher efficient equipment and system — UEAC

O Field test

Outdoor Environment
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® Electricity savings reached 89.8%
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3. Higher efficient equipment and system — UEAC

O The Global Cooling Prize — Grand Winner

April 30, 2021
Beijing National Convention Center

Reported by CCTV News (China

Central Television)

l Global Cooling Prize
Grand Winner

2021

Global Cooling
Prize

~ Gree Electric Appliances Inc. of Zhuhai v
- and partner Tsinghua University

= APRIL 29, 2021
TR S NES
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3. Higher efficient equipment and system — THIC

O Temperature and Humidity Independent Control
O Eliminating sensible heat load and latent heat load independently
O Improving system COP by utilizing high temperature cold source

Coolinm

Conventional E = ~
OoP
sys(~7°C)

Low temperature
cold source

Improving COP:
>30%)!

THIC

COP COP
sys(~16°C) Deh

High temperature
cold source
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3. Higher efficient equipment and system — THIC
O Temperature and Humidity Independent Control
O Latent heatload: by liquid desiccant
O Sensible heat load: improving system efficiency by decreasing the demand for low
temperature cold source
45 | T . 10
20% _— Outdoor o |
35 40% i 5
G 25 6
: 15 % 5 —e— Conventional type (7°C)
:: —=— High temp. type (16°C)
> 2t COP increase >35%
1r Centrifugal water chiller
-5 . 5 m s 0 55 o (tested results)

Humidity ratio (g/kg)

Load ratio (IPLV condition)
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3. Higher efficient equipment and system — THIC

O Temperature and Humidity Independent Control
O Especially suitable for extreme environment

Displacement
ventilation;
Personalized

Dehumidification method
Indirect evaporative cooling [ Dry outdoor air } |:> @

ventilation

éGQZ?kOC’ Air-supply

e terminal
( -
_ High temperature Sensible
Natural cooling source cooling source |16~18°C terminal
Mechanical chiller e water or
refrigerant

Radiant panel
Dry fan coil
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3. Higher efficient equipment and system — THIC

O Temperature and Humidity Independent Control
O Application: different climate regions and building types

THIC system applications:
» 20 million m? of buildings
in recent 5 years
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4. Thermal adaptation theory and application

O The Ceiling fans are widely used in many countries
O Reduceindoor thermal stress & improved thermal comfort

O Reduce energy consumption 30% by increasing indoor air velocity and setting
temperature

Improve indoor air temperature stratification for tall space heated buildings

O
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4. Thermal adaptation theory and application

Human shows higher thermal comfort in under a natural draft condition
The comfortable ambient temperature of naturally ventilated buildings is significantly
higher than the design temperature of air conditioning
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4. Thermal adaptation theory and application

O Collecting natural wind characteristics
O Establishing the frequency of natural wind
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Thermal adaptation theory and application

OO0

Developing mechanical ventilation fans: imitating natural wind
Suitable for buildings in extreme environment

O Reducing the set temperature of the air conditioning system
O Reducing energy demand and carbon emissions

O Improving the health and thermal comfort
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Summary: design sustainable buildings in extreme environments
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Thanks for listening!
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